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1. Introduction

In this paper we propose and analyze a simple strategy to construct composite discretizations
of self-adjoint second-order elliptic equations on nonmatching grids. The need for discretiza-
tions on nonmatching grids is motivated partially by parallel adaptive solution methods for
PDEs, which is a much easier task if nonmatching grids are allowed across the subdomain
boundaries.

Our method can be described as an interior penalty approximation based on partially
discontinuous elements. The mortar method is a general technique of handling discretizations

1The work of the first and the second authors has been partially supported by the National Science
Foundation under Grant DMS-9973328. The work of the last author was performed under the auspices of
the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under
contract W-7405-Eng-48.
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on nonmatching grids. However, our motivation for using the penalty approach is that it
eliminates the need for additional (Lagrange multiplier or mortar) spaces. There is a vast
number of publications devoted to the mortar finite element method as a general strategy for
deriving discretization methods on nonmatching grids. We refer the interested reader to the
series of Proceedings of the International Conferences on Domain Decomposition Methods
(for more information see, http://www.ddm.org).

In the present paper, we assume a model situation where the domain is split into a
fixed number of nonoverlapping subdomains, and each subdomain is meshed independently.
Therefore in general, since the global mesh is not aligned along the subdomain interfaces, the
employed finite element spaces consist of the functions which are discontinuous along these
interfaces. The jump in the values of the functions along these interfaces is penalized in the
variational formulation, which is a standard approach in the interior penalty method. Such
methods have been studied in the past by Rivkind [17], Babuška [3], Arnold [2], and Douglas
and Dupont [9] and more recently in [18] and [15, 16] in a different context. We study the
approach of Rivkind [17] in the context of nonmatching grids and weak solutions and derive
error estimates in both “energy” and L2-norms. An important feature of this approach is that
it omits the term in the weak formulation that involves the conormal derivative of the solution
to the interface boundaries, since the latter leads to nonsymmetric discretization (cf. [16]).
Thus, for smooth solutions we lose the optimal accuracy due to the poor approximation at
the interface, but on the other hand we produce symmetric and positive definite discrete
problem which has optimal condition number, provided that condition (A.2) holds. More
involved analysis provided in [11] allows one to obtain an almost optimal error of the scheme
without any additional assumptions.

One can improve the accuracy by increasing the weight in the penalty term at the ex-
pense of increased condition number and regularity of the solution, cf., e.g., [8]. Another
approach that requires H2-regularity which has optimal order error estimates is based on a
negative norm for the penalty term (see Remark 3.1). This approach is quite feasible but
also increases the condition number and in general requires a more involved implementation.
Both approaches (increased penalty weight or negative norm penalty terms) will increase the
computational complexity of the method. Here, we play down this issue, since we believe
that the adaptive grid refinement approach discussed in the present paper is a good alterna-
tive. To compensate for the low accuracy near the subdomain interfaces, we use local grid
refinement based on suitable a posteriori error estimators and indicators. Adaptive methods
have been extensively used for problems with local singular behavior. Our experience shows
that the proposed interior penalty method embedded in a multilevel adaptive grid refinement
environment leads to reasonably accurate and fast computations.

The Galerkin finite element method with penalty for this class of problems on matching
grids has been proposed and studied in [3, 17]. Similarly, in [8], the interface problem has
been addressed by recasting the problem as a system of first order (by introducing the
gradient of the solution as a new vector variable) and applying the least-squares method for
the system. Integrals of the squared jumps in the scalar and the normal component of the
vector functions on the interface are added as penalty terms in the least-squares functional.
In both cases an optimal with respect to the error method leads to a nonoptimal condition
number of the discrete problem.

Other approaches for handling discretizations on nonmatching grids can involve different
discretizations in the different subdomains, for example, mixed finite element method in
one subdomain and standard Galerkin on the other as proposed in [20] and studied further
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in [12], or mixed finite element discretizations in both subdomains, cf. e.g., [1, 13].
In this paper we also address the issue of constructing preconditioners for solving the

system on composite nonmatching grids. We propose and investigate an interface domain
decomposition type preconditioner (for two subdomains), that is spectrally equivalent to a
reduced problem on the interface.

Finally, the accuracy of the proposed method and the optimal condition number of the
preconditioned problem are demonstrated on a series of numerical experiments on model
problems.

The structure of the present paper is as follows. In Section 2 we formulate the problem
and its discretization. Section 3 contains the error analysis. The construction and analysis
of the interface domain decomposition preconditioners are given in Section 4. The numerical
results can found in the final section, Section 5.

2. Notations and problem formulation

In this paper we use the standard notation for Sobolev spaces of functions defined in a
bounded domain Ω ⊂ Rd, d = 2, 3. For example, Hs(Ω), for s being an integer, denotes the
Hilbert space of the functions u defined on Ω and having generalized derivatives up to the
order s that are square integrable in Ω. For noninteger s > 0 the spaces are obtained by
the real method of interpolation (cf. [14]). H1

0 (Ω) is the space of functions in H1(Ω) which
vanish on ∂Ω. The norm of u ∈ Hs(Ω) is denoted by ||u||s,Ω. We also use the notation
|u|s,Ω for the seminorm in Hs(Ω). For the traces of functions in H1

0 (Ω) on a manifold Γ
of dimension d − 1 (curves and surfaces) with ∂Γ ⊂ ∂Ω, we use the Sobolev fractional-

order spaces commonly denoted by H
1/2
00 (Γ). The corresponding norm in this space can be

characterized, for example, as the infimum of the H1(Ω)-norm of all possible H1-extensions
vanishing on ∂Ω.

For a given bounded simply-connected polygon (polytope) Ω, a source term f ∈ L2(Ω),
and coefficient matrix a(x) that is symmetric, uniformly positive definite and bounded in Ω
we consider the following boundary value problem for u(x):





−∇ · a∇u = f(x), x ∈ Ω,

u(x) = gD(x), x ∈ ∂ΩD,

a∇u · n = gN(x), x ∈ ∂ΩN ,

(2.1)

where ∂Ω = ∂ΩD ∪ ∂ΩN , ∂ΩD ∩ ∂ΩN = ∅, n is the unit vector normal to ∂Ω (pointing
outward Ω), ∂ΩD has a positive measure, and gD and gN are given functions.

To simplify our notation and the overall exposition, we reduce our considerations to the
case of homogeneous Dirichlet data given on the whole boundary ∂Ω, i.e., ΓN = ∅ (ΓD = ∂Ω)
and gD = u|ΓD

= 0. However, most of our numerical experiments were done for the general
case (2.1).

We shall study a discretization of this problem by the finite element method while using
meshes that may not align along certain interfaces. This situation may arise when the domain
Ω is split initially into p nonoverlapping subdomains Ωi, i = 1, . . . , p and each subdomain
is meshed (triangulated) independently of the others. We assume that for any i = 1, . . . , p,
the mesh Ti is a quasiuniform triangulation of Ωi, i.e., if hT := diam(T ), hi := maxT∈Ti

hT

and |T | := meas(T ) then |T | > Chd
i for any T ∈ Ti, d = 2, 3 with a constant C independent

of the triangulation. We also denote h := max hi and T := ∪iTi. Let Γij be the interface
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between two subdomains Ωi and Ωj and Γ be the union of all interfaces Γij. We note that
there is no assumption that along each interface Γij the triangulations Ti and Tj produce the
same mesh.

Let Vi be the conforming finite element space of piecewise linear functions associated with
the triangulation Ti and vanishing on ∂ΩD ∩ ∂Ωi. Further, the finite element space V on T
will be the direct sum of Vi, i = 1, . . . , p, that is V = {v : v|Ωi

:= vi ∈ Vi, i = 1, . . . , p}.
Since the meshes Ti in Ωi, i = 1, . . . , p, are generally not aligned along the subdomain
interfaces Γij, the functions v ∈ V are, in general, discontinuous across Γij. However, their
traces on Γij from Ωi and Ωj are welldefined.

We now introduce the second order elliptic bilinear forms

ai(v, ψ) :=

∫

Ωi

a∇v · ∇ψ dx, for all v, ψ ∈ H1
0 (Ω).

Note that the form ai(·, ·) is well defined in Vi × Vi, as well.
The weak form of the boundary-value problem (2.1) is: Find u ∈ H1

0 (Ω) such that

a(u, ϕ) :=
∑

i

ai(u, ϕ) = (f, ϕ), for all ϕ ∈ H1
0 (Ω). (2.2)

For the interior penalty finite element method we shall need some additional constructions.
To simplify our notation and exposition, we take d = 2 (for d = 3 in the construction below
we have to take |e|1/2 instead of |e|). We specify a “master” side of each interface Γij, i.e.,
the mesh from Tk for k fixed, either equal to i or to j, will generate partition Eij of Γij.
Then e ∈ Eij defined as e = Γij ∩ ∂T , for all T ∈ Tk. Finally, we define the set of interface
“master” elements E = ∪i<jEij.

We introduce the following bilinear form on V × V :

bh(v, ϕ) :=
∑
e∈E

1

|e|
∫

e

[v]e[ϕ]e d%. (2.3)

Here, [ϕ]e is the jump of ϕ across e ∈ Eij ⊂ E , i.e., [ϕ]e = ϕi|e− ϕj|e where Eij is a partition
of Γij obtained from the master triangulation Tk (k = i or k = j) and |e| is the measure of
e. Since the triangulations Ti are assumed quasiuniform, we have that |e| ' hk.

Remark 2.1. In the case of coefficients with large jumps across the interface Γ or
anisotropy, more appropriate is to replace 1

|e| by σ(e)
|e| in (2.3), where the factor σ(e) uses

harmonic averages of the coefficient matrix a(x):

σ(e) =
2

κi + κj

, κl =
1

|e|
∫

e

a−1
l (x)ne(x) · ne(x) d%, l = i, j.

Here ne(x) denotes the unit normal vector to e at the point x ∈ e.

We study the following discretization method which is subsequently referred to as the
interior penalty discretization:

Find uh ∈ V such that

A(uh, ϕ) := a(uh, ϕ) + bh(uh, ϕ) = (f, ϕ), for all ϕ ∈ V. (2.4)
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Since the finite element space contains functions that are discontinuous across Γ, the penalty
form bh(·, ·) imposes a weak compatibility of the solution across Γ, i.e., it controls the size
of the jump [uh]e.

The bilinear form A(·, ·), defined by (2.4), is symmetric and positive definite. It is related
to, but much simpler than, the one from the corresponding discontinuous Galerkin method
used in [2, 16]. The simplification comes from the fact that we have disregarded the term
involving the conormal derivative a∇u · n along the interface Γ. This simplification comes
with a cost: the proposed approximation will not have optimal order of convergence, in
contrast to the nonsymmetric interior penalty Galerkin method studied in [16]. However,
our formulation leads to a symmetric and positive definite problem and combined with
local grid refinement generated by an a posteriori analysis produces efficient and accurate
computational method as demonstrated by our numerical experiments.

3. Error estimates

In this section we derive the basic error estimates for the proposed interior penalty method
(2.4). We assume the following two conditions:

(A.1) The solution u(x) of (2.2) is H
3
2
+α(Ω)-regular, with α > 0, and the following

estimate ‖u‖ 3
2
+α,Ω 6 C‖f‖0,Ω holds;

(A.2) The maximum mesh-size hi of Ti satisfies hi ' h, for i = 1, . . . , p, i.e. the mesh T
is a global quasiuniform partition of Ω.

For uh ∈ V we define the “energy” norm ||uh||21,h := A(uh, uh). Obviously this norm is
well defined for u ∈ H1

0 (Ω) and ||u||21,h = a(u, u).
The following theorem is the main result in this section:

Theorem 3.1. Assume that the conditions (A.1), (A.2) hold. Then

||u− uh||20,Ω + h||u− uh||21,h 6 Ch2||u||23
2
+α,Ω

(3.1)

with a constant C independent of h and α > 0.

Proof. We first estimate ||u−uh||21,h. Note that the exact solution u satisfies the identity

A(u, ϕ) = (f, ϕ) +

∫

Γ

a∇u · n[ϕ] d%, for all ϕ ∈ V.

Here, we used that the exact solution has continuous (in a weak sense) normal flux.
Recall that the discrete solution uh satisfies A(uh, ϕ) = (f, ϕ) for all ϕ ∈ V, so that the

error eh := u− uh satisfies the identity

A(u− uh, ϕ) =

∫

Γ

a∇u · n [ϕ] d%, for all ϕ ∈ V. (3.2)

Let ψh be the nodal interpolant of the exact solution in V . Note that ψh is discontinuous
on Γ, but its jump [ψh] is small, since u is a continuous function in Ω.

Now we split the error eh in the following way: eh = u−ψh− (uh−ψh). Using the above
identities, we get the following basic equality for eh:

||eh||21,h ≡ A(eh, eh) = A(eh, u− ψh) + A(eh, ψh − uh). (3.3)
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We apply Schwarz’ inequality to the term A(eh, u− ψh):

A(eh, u− ψh) 6 A(eh, eh)
1/2A(u− ψh, u− ψh)

1/2 = ||eh||1,h A(u− ψh, u− ψh)
1/2

and use identity (3.2) with ϕ = ψh − uh for the second term to get

A(eh, ψh − uh) =

∫

Γ

a∇u · n [ψh − uh] d%.

Now we transform this term by adding and subtracting u and use again Schwarz’ inequality
to arrive at

∫

Γ

a∇u · n [ψh − uh] d% =

∫

Γ

a∇u · n [ψh − u] d% +

∫

Γ

a∇u · n [u− uh] d%

6


∑

e∈E
|e|

∫

e

(a∇u · n)2 d%




1/2

A(u− ψh, u− ψh)
1/2

+


∑

e∈E
|e|

∫

e

(a∇u · n)2 d%




1/2

A(eh, eh)
1/2.

Since the solution u(x) is H
3
2
+α(Ω)-regular, α > 0, the integral term is easily bounded by

the trace theorem

∑
e∈E

|e|
∫

e

(a∇u · n)2 d% 6 Ch‖∇u · n‖2
0,Γ 6 Ch‖u‖2

3
2
+α,Ω

. (3.4)

From (3.3) and (3.4) it follows that

‖eh‖1, h 6 Ch
1
2‖u‖ 3

2
+α, Ω + CA(u− ψh, u− ψh)

1
2 . (3.5)

It is clear that the first term (coming from the boundary integral involving the normal
derivative of the unknown solution) gives the largest contribution to the error. We show
below that the remaining terms on the right-hand side of (3.5) are asymptotically smaller.

We first estimate the term a(u− ψh, u− ψh) in A(·, ·) = a(·, ·) + bh(·, ·). For this we use
the standard error estimate for the interpolant ψh of u on V :

a(u− ψh, u− ψh) =
∑

i

ai(u− ψh, u− ψh) 6 Ch1+2α|u|23
2
+α,Ω

. (3.6)

For the second term bh(·, ·), we proceed as follows. First, we note that

∑
e∈E

1

|e|
∫

e

[u− ψh]
2
e d% 6 Ch−1

∑
Eij⊂E

∫

Γij

[u− ψh]
2 d%

6 Ch−1
∑
Eij⊂E

∫

Γij

(
(u− ψh)|Γij∩∂Ωi

− (u− ψh)|Γij∩∂Ωj

)2

d%

6 Ch−1

p∑

l=1

∫

∂Ωl

(u− ψh)
2d%.

(3.7)
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Fix l, 1 6 l 6 p. Let T be an element of Tl such that el = ∂T ∩∂Ωl is an edge of T . Since
the triangulation Tl is quasiuniform, we have |el| ' ChT and |T | ' Ch2

T . We next recall the
following (trace type) inequality:

1

|el|
∫

el

ϕ2 d% 6 C
{|h|−2‖ϕ‖2

0, T + |ϕ|21,T

}
, for ϕ ∈ H1(T ), (3.8)

which is verified first for a domain of unit size and then by transforming T to a domain of
unit size to get the appropriate scaling.

Summing (3.8) over all edges of T ∈ Tl along ∂Ωl and using the approximation properties
of the space Vl (ψh is the nodal interpolant of u in V ) we get

h−1
∫

∂Ωl
(u− ψh)

2d% 6 C
(
h−2‖u− ψh‖2

0, Ωl
+ ‖u− ψh‖2

1, Ωl

)

6 Ch1+2α||u||23
2
+α,Ωl

(3.9)

and the result follows by summation over l. That is, (3.7), the last estimate, (3.9) and the
earlier one, (3.6), lead to the estimate

A(u− ψh, u− ψh) 6 Ch1+2α|u|23
2
+α, Ω

,

which, based on (3.5), completes the error analysis in energy (‖.‖1,h) norm.
We now continue with bounding the error in L2-norm, which is obtained by a standard

duality argument. Consider the dual problem: Find z ∈ H1
0 (Ω) such that a(z, ϕ) = (eh, ϕ)

for every ϕ ∈ H1
0 (Ω). Let zh ∈ V be the discrete solution of the dual problem obtained by

the above described penalty method, i.e., A(zh, ϕ) = (eh, ϕ) for all ϕ ∈ V .
Using the fact that zh and uh are the solutions of the discrete problems approximating z

and u, respectively, one gets

‖eh‖2
0 = a(z, eh) +

∫

Γ

a∇z · n [eh]d%

= a(z − zh, eh) + a(zh, eh) +

∫

Γ

a∇z · n [eh]d%

6 ‖z − zh‖1,h‖eh‖1,h − bh(zh, u− uh) +

∫

Γ

a∇u · n [zh]d% +

∫

Γ

a∇z · n [eh]d%.

Thus, from the Cauchy—Schwarz inequality and the energy error estimate (3.1), we have

−bh(zh, u− uh) = bh(z − zh, u− uh)

6 [bh(z − zh, z − zh)bh(u− uh, u− uh)]
1
2

6 ‖z − zh‖1,h‖u− uh‖1,h

6 Ch
1
2‖z‖ 3

2
+α,Ω‖eh‖1,h.

One also has, using the Cauchy—Schwarz, the trace inequality, the energy error estimate
(3.1) for z − zh, and assumption (A.1)

∫

Γ

a∇u · n [zh]d% 6 Ch
1
2




∫

Γ

(a∇u · n)2 d%




1
2

[bh(z − zh, z − zh)]
1
2

6 Ch‖u‖ 3
2
+α,Ω‖z‖ 3

2
+α,Ω 6 Ch‖u‖ 3

2
+α,Ω‖eh‖0.
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Finally, apply again the trace inequality and assumption (A.1) to get

∫

Γ

(a∇z · n)2 d% 6 C‖z‖2
3
2
+α,Ω

6 C||eh||20.

Using these estimates we get

||eh||20 6 C
(
h

1
2 ||z|| 3

2
+α,Ω||eh||1,h + h||z|| 3

2
+α,Ω ||u|| 3

2
+α,Ω

)
6 Ch||u|| 3

2
+α,Ω ||eh||0,

which yields (3.1) for the L2-norm.

Remark 3.1. One can achieve optimal order error estimates if the penalty term is taken
in a negative norm which will require the use of a different penalty weight. More precisely,
one may use the following negative norm interior penalty boundary form:

1

h1+2α

〈
Λ−α

h [v], [w]
〉
Γ
,

where Λh : V1 7→ V1 defines an H1
0 (Γ)-equivalent norm on V1|Γ, that is < Λhv, v >Γ'

‖v‖2
H1

0 (Γ)
for v ∈ V1|Γ. Here for simplicity we have assumed two subdomains, p = 2 and

taken k = 1 as the master side of the boundary Γ = Γ12. For α ∈ [0, 1
2
] one gets a scale

of interior penalty forms. By a straightforward modification of the above error analysis one
can get a O(h

1
2
+α) error estimates in energy norm for u ∈ H

3
2
+α(Ω). Unfortunately, the

condition number of the resulting matrices increases to O(h−2−2α), instead of O(h−2), the
condition number of the unpenalized problem. Also, use of the negative norm penalty forms
raises the question of computing the actions of the corresponding boundary operator, which
in general gives rise to dense matrices. If one assumes a multilevel structure of the mesh in
Ω1, then one potential candidate for Λ−α

h which is inexpensively computable can come from
the (boundary) Sobolev norms of negative fractional order studied in [7]. It is clear that
the use of negative norm operators leads to more involved implementation. In the present
paper we have taken the somewhat simpler approach of utilizing local refinement near the
boundary in order to improve the accuracy.

4. Iterative solution of the resulting linear system

In this section we study a preconditioning technique for solving the system of algebraic
equations produced by the interior penalty method described above. Here we shall study
the case p = 2, so that Γ12 = Γ. Further we shall assume that Γ splits Ω into two simply-
connected subdomains and Γ has both ends on ∂Ω.

We introduce the reduced problem on the interface Γ. It is obtained by eliminating the
interior to Ω1 and all Ω2 degrees of freedom, thus leading to the Schur interface complement
system for the unknowns on Γ.

First, we introduce the Schur complement operators Si : Vi|Γ 7→ Vi|Γ, i = 1, 2:

(Siψi, ψi) := inf
vi∈Vi: vi|Γ=ψi

ai(vi, vi),

where the pairing (·, ·) represents the L2-inner product on Γ.
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Further, for v, w ∈ V we denote by ϕi = vi|Γ and ψi ∈ wi|Γ the traces of vi and wi,
i = 1, 2 on Γ. One can eliminate the unknowns in the subdomain Ω2 which is equivalent to
introducing the Schur complement operator σ1 (see Remark 4.1 for more details):

(σ1ϕ1, ϕ1) := inf
v2∈V2

[a2(v2, v2) + bh(ϕ, ϕ)] . (4.1)

So we get the following reduced problem on Γ:

(S1ϕ1, ψ1) + (σ1ϕ1, ψ1) = (g1, ψ1), for all ψ1 ∈ V1|Γ . (4.2)

Obviously, S1 + σ1 : V1|Γ 7→ V1|Γ is a symmetric and positive definite operator.
The following main result holds:

Theorem 4.1. The reduced boundary operator S1 +σ1 is spectrally equivalent to S1, that
is

(S1ψ1, ψ1) 6 ((S1 + σ1)ψ1, ψ1) 6 C(S1ψ1, ψ1), for all ψ1 ∈ V1|Γ
with a constant independent of h and h1

h2
.

Proof. We only have to prove that σ1 is bounded in terms of S1. Note that (S1·, ·) defines

a norm equivalent to H
1
2
00(Γ)-norm restricted to the traces of the finite element space V1. The

definition of σ1 can be rewritten as

(σ1ψ1, ψ1) = inf
ψ2∈V2|Γ

[
inf

v2∈V2, v2|Γ=ψ2

a2(v2, v2) + bh(ψ, ψ)

]
for all ψ2 ∈ V2|Γ ,

which will lead to the inequality

(σ1ψ1, ψ1) 6 (S2ψ2, ψ2) + bh(ψ, ψ), for all ψ2 ∈ V2|Γ .

Choose now ψ2 = Qh
2ψ1 where Qh

2 is the L2-projection onto V2. In order to define Qh
2ψ1, we

assume that ψ1 has been harmonically extended in Ω2, which means that the H1(Ω2)-norm

of the extension is bounded by the H
1
2
00(Γ)-norm of ψ1. Then, using inequality (3.8), the

L2-approximation and H1-boundedness properties of Qh
2 , and the fact that |e| ' h2, the

boundary term is estimated as follows:

bh(ψ, ψ) =
∑
e∈E
|e|−1

∫
e

[
(I −Qh

2)ψ1

]2
d%

6 C
[|e|−2‖(I −Qh

2)ψ1‖2
0, Ω2

+ ‖(I −Qh
2)ψ1‖2

1,Ω2

]

6 C‖ψ1‖2
1, Ω2

6 C‖ψ1‖2
1
2
, Γ

6 C(S1ψ1, ψ1).

The rest is also straightforward. One has

(S2ψ2, ψ2) 6 a2(Q
h
2ψ1, Qh

2ψ1) 6 C‖Qh
2ψ1‖2

1, Ω2

6 C‖ψ1‖2
1, Ω2

6 C‖ψ1‖2
1
2
, Γ

6 C(S1ψ1, ψ1).
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Remark 4.1. In order to compute the action of σ1, one has to eliminate the unknowns
in Ω2 (or to evaluate (4.1)). This is equivalent to the following subdomain problem: given a
ψ1 on Γ, find a ψ2 ∈ V2 which solves the variational problem

a2(ψ2, ϕ2) +
∑
e∈E

1

|e|
∫

e

ψ2ϕ2 d% =
∑
e∈E

1

|e|
∫

e

ψ1ϕ2 d%, for all ϕ2 ∈ V2;

then ψ2|Γ = σ1ψ1. Obviously, the condition number of the resulting matrix depends on the
size of |e|, e ∈ E . It is clear that if E was based on T2, then the condition number of the
above system would have been independent of h1. The actions of σ1 can be computed using
the preconditioned conjugate gradient method exploiting (a variant of) the preconditioner
for interior penalty bilinear form studied in [18].

5. Numerical results

The performance of the proposed penalty method is described in the following four subsec-
tions. In Subsection 5.1 we give results for nonmatching and matching grids. In Subsection
5.2, we have incorporated a weight δ > 0 in the penalty term, and studied its effect on
the accuracy and on the condition number of the resulting matrices. Subsection 5.3 deals
with locally refined meshes obtained as a result of a posteriori error analysis in order to
improve the overall accuracy of the method. Finally, in Subsection 5.4, condition number
estimates for the original problem (2.4), as well as for the reduced problem (4.2), are given.
The same is done for the preconditioned reduced problem (4.2), using the interface domain
decomposition type preconditioner S1 described in Section 4.

Our finite element implementation handles arbitrary triangulations of the domain and
linear finite elements. The code includes a refinement technique, which yields a sequence
of nested triangulations that are further used to define multilevel preconditioners for the
subdomain problems.

In all tables we present the computational results for various test problems with smooth
solutions. The domain is split into two subdomains that are triangulated independently
so that the meshes do not necessarily match along the interface Γ. In Tables 1, 2, and 5,
we present the number of nodes for each level of grid refinement, the error in maximum
(L∞), L2 and H1-norm, and the condition number of the algebraic system for the penalty
approximation. The results are given for each subdomain separately, in each box the first
line is for the “bigger” domain and the second line is for the “smaller” one (see Figure 1,
left).

5.1. Uniform refinement results on nonmatching grids

In the first test we use the mesh shown in Figure 1. The grids are nonmatching along
the interface between the subdomains Ω1 (upper left part of Figure 1) and Ω2 (lower right
corner). The exact solution is u(x, y) = x2 − y2, and the coefficients are a1 = a2 = I.
Dirichlet boundary conditions are imposed on the lines x = 0, y = 0, and Neumann boundary
conditions on the lines x = 1, y = 1. The symmetric and positive definite discrete problem
is solved using the CG method.

In Figure 1, in addition to the mesh, we have given the approximate solution and the
error on refinement level 2. Table 1 summarizes the numerical results. The last column gives
the condition number of the discrete problem. The error on the finest (5th) level is 0.22%,
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Figure 1. Mesh on level 2 (left), the approximate solution on level 2 (middle) and the error on level 2
(right)

Table 1. Numerical results for uniform refinement; nonmatching grids.

Uniformly refined grid
level # nodes L∞-error L2-error H1-error condition #

1 65 0.027682 0.009983 0.095231 149
31 0.038660 0.009136 0.069610

2 225 0.015073 0.005105 0.049991 519
102 0.022372 0.004702 0.038111

3 833 0.008204 0.002527 0.025563 2278
367 0.011481 0.002291 0.019864

4 3201 0.004255 0.001263 0.013130 9781
1389 0.005830 0.001131 0.010353

5 12545 0.002176 0.000632 0.006796 40083
5401 0.002940 0.000566 0.005512

order ≈ 1 ≈ 1 ≈ 1

0.20% and 0.47% correspondingly in the discrete maximum, L2 and H1-norms.
To make an assessment of the performance of the penalty method, we solved the same

problem on matching grids uniformly refined to level 5. The results of these computations
are presented in Table 2. Comparing Table 1 and Table 2, one can see that the condition
numbers and the accuracy are very close. The error on the finest (5th) level is 0.35%, 0.34%
and 0.57% correspondingly in the discrete maximum-norm, L2-norm and H1-norm.

5.2. Variable penalty weight

Here we test how the penalty weight δ, incorporated in front of the interior penalty boundary
form, affects the accuracy and condition number of the resulting discrete problems:

a(uh, ϕ) +
∑
e∈E

δ

|e|
∫

e

[uh]e[ϕ]e d% = (f, ϕ) +

∫

ΓN

gNϕd%, for all ϕ ∈ V.

On ΓD we take uh to be equal to the piecewise linear interpolant of the boundary data gD.
The domain is as in the previous subsections and Dirichlet boundary conditions are ap-

plied on the whole boundary ∂Ω. In Table 3 we give the results for varying δ on nonmatching



378 R. Lazarov, S. Tomov, and P. Vassilevski

Table 2. Numerical results for uniform refinement; matching grids.

Uniformly refined grid
level # nodes L∞-error L2-error H1-error condition #

1 65 0.039405 0.016707 0.106070 143
25 0.054990 0.016297 0.084409

2 225 0.022533 0.008476 0.056189 498
81 0.027814 0.008517 0.046363

3 833 0.012380 0.004281 0.029705 1829
289 0.014366 0.004374 0.025188

4 3201 0.006617 0.002154 0.015650 6982
1089 0.007399 0.002221 0.013546

5 12545 0.003456 0.001081 0.008212 27247
4225 0.003770 0.001120 0.007223

order ≈ 1 ≈ 1 ≈ 1

grids, and in Table 4 are the results for the case of matching grids. The meshes are kept fixed.
The nonmatching grid has 833 nodes in subdomain Ω1 and 231 nodes in Ω2, corresponding
to h = 0.04 (h−

1
2 = 5). The matching grid has 833 nodes in Ω1 and 289 nodes in Ω2. The

Table 3. Numerical results for varying δ; nonmatching fixed grids.

δ L∞-error L2-error H1-error condition #
0.1 0.255030 0.141213 0.497448 420

0.605293 0.227123 0.642739
1 0.049788 0.019099 0.135558 420

0.088299 0.029629 0.132201

h−1/2=5 0.013678 0.004131 0.092995 1190
0.020614 0.006253 0.074047

10 0.007464 0.002485 0.089832 2273
0.011123 0.003379 0.069903

1000 0.013250 0.002558 0.093995 88288
0.011979 0.002308 0.075255

computations for both matching and nonmatching grids show that increasing δ puts more
weight on the penalty term and leads to a decrease in the errors in all norms. However,
for δ larger than h−1/2 there is no significant improvement in the accuracy. Moreover, for
nonmatching grids very large δ causes deterioration of the error in maximum and H1-norm
and, as expected, increases the condition number.

5.3. Local refinement results

We consider the problem from Subsection 5.1. There is a wide range of well-established
a posteriori local error estimators that are used to generate locally refined meshes that
guarantee accurate discretizations, e.g., “residual based refinement” [4, 6, 19] “Zienkiewicz-
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Table 4. Numerical results for varying δ; matching fixed grids.

δ L∞-error L2-error H1-error condition #
0.1 0.080767 0.024755 0.159351 440

0.184311 0.039591 0.203872
1 0.012907 0.003594 0.036052 440

0.022984 0.005555 0.035535

h−1/2 = 5 0.003310 0.000759 0.023133 615
0.004671 0.001158 0.014892

10 0.001778 0.000417 0.022384 1162
0.002340 0.000590 0.013363

1000 0.000019 0.000173 0.022098 42261
0.000024 0.000100 0.012758

Zhu error estimator” [21], “hierarchical refinement” [5], and “second derivative refinement”
[10].

In our context we had to adapt the estimators near Γ due to the interior penalty form.
The grids obtained as a result of applying the above four error estimators differ slightly,
but in all cases of smooth solutions the estimators lead to meshes that are refined in the
areas around the interior boundary. Here we present the results from the “residual based
refinement” estimator only.

Figure 2. Mesh on level 2 (left), mesh on level 4 (middle), and the error on level 4 (right).

The method is based on equilibrating certain residuals over the elements. The residual
over one element is decomposed into two parts. The first part contains the contribution from
the interior of the finite element and the second part consists of the contribution from jumps
of the normal flux across the finite element boundary.

More specifically, in our computations for every element T ∈ Ti we compute and equili-
brate the following quantities:

ρT ≡ hT ||f +∇ · a∇uh||T + h
1/2
T

∑

e∈∂T

Re ,
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where the residuals Re are defined as

Re =





0 if e ∈ ∂ΩD ,

||gN − a∇uh · n||e if e ∈ ∂ΩN ,
1
2
||[a∇uh] · n||e if e ∈ Ω \ {∂Ω ∪ Γ},

1
2
||[a∇uh] · n||e + ||a∇uh · n||e if e ∈ Γ.

(5.1)

Removing the jump term 0.5||[a∇uh] · n||e for e ∈ Γ from Re (the last line of (5.1))
will not change substantially the quality of the error estimator, but the resulting refinement
procedure will be fully parallel.

Asymptotically, this error indicator, as the a priori estimate, is of order 1/2 because of
the term ||a∇uh · n||e. Equilibration of the local error indicators ρT ensures that the term
h1

∫
Γ

(a∇u · n)2 d% (see, the error estimates in Theorem 3.1) will be of size Ch2, where h is

the quasiuniform size of the mesh away from Γ, i.e., due to the local refinement we should
get close to a first order scheme.

Table 5. Numerical results for local refinement; nonmatching grids.

level # nodes L∞-error L2-error H1-error condition #
1 225 0.022438 0.007905 0.052656 521

102 0.032274 0.007905 0.052656
2 833 0.012507 0.003926 0.027194 2328

307 0.016949 0.003248 0.024047
3 1139 0.006597 0.002000 0.022904 5036

589 0.008623 0.001591 0.015972
4 1759 0.003334 0.001017 0.021487 9814

1109 0.004390 0.000802 0.013027

The computational results are summarized in Table 5. One notices that for our interior
penalty approximation the numerical experiments show that the local refinement reduces
the L2-error according to the theory, the error in the maximum norm is slightly better than
one may expect and the error in H1-norm is slightly worse than expected.

Figure 3. Mesh on level 3 (left), the error (middle), and the approximate solution on the same level (right).
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Further, on Figure 3 we show the mesh and the error for two independently meshed
subdomains. The solution in this example is chosen in such a way that a∇u · n = 0 accross
the interface. The plot shows that the error is uniformly the same in the whole domain
which in turn indicates that the term a∇u · n is the main contributor to the error of the
method.

5.4. Estimates for the condition numbers

The results given in this section are for the problem solved in Subsection 5.1. The meshes
are nonmatching and uniform refinement is used. Table 6 compares the condition numbers
for matrices corresponding to the original problem (2.4), the reduced problem (4.2), and
the reduced problem (4.2) preconditioned with S−1

1 (see Section 4). As one can see in

Table 6. In columns 1, 2, and 3 we give the condition numbers for the problems (2.4), (4.2), and (4.2)
preconditioned with S−1

1 , respectively.

Condition Numbers
Level # nodes 1 2 3

1 65 149 4 1.90
31

2 225 519 8 1.93
102

3 833 2278 16 2.15
367

4 3201 9781 35 2.46
1389

5 12545 40083 70 2.57
5401

order 2 2 1 0

Table 6, the condition numbers behave like: O(h−2) for the original problem, O(h−1) for
(nonpreconditioned) reduced problems, and O(1) when the preconditioner from Section 4 is
applied, all in good agreement with the theory.
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